ab@hmsn诱导番茄侧根发生的初步探究【字数:7016】
目录
摘 要 II
关键词 II
Abatract III
引言
引言 1
1 材料与方法 2
1.1 材料培养 2
1.2 主要试剂 2
1.3 处理 2
1.4 AB@hMSN表征及释氢能力分析 2
1.5 筛选AB@hMSN的最佳处理浓度 2
1.6 番茄根的测量和侧根原基的计数 2
1.7 氢气含量测定 3
1.8 荧光定量PCR分析 3
1.9 数据分析 3
2 结果与分析 3
2.1 AB@hMSN表征及释氢能力分析结果 3
2.2 AB@hMSN的工作浓度筛选结果 5
2.3 AB@hMSN释氢促进番茄侧根及侧根原基的发生 6
2.4 AB@hMSN诱导番茄幼苗根部内源H2生成 8
2.5 H2调节细胞周期循环基因的转录水平 9
3 讨论 10
3.1 纳米颗粒对植物侧根发生的影响 10
3.2 AB@hMSN调控细胞周期基因表达从而诱导番茄侧根发生 11
致谢 12
参考文献 12
AB@hMSN诱导番茄侧根发生的初步探究
摘 要
氢气(Hydrogen gas,H2)是一种新发现的气体信号分子。已有研究表明H2可以调控植物的生长发育,但传统的富氢水处理难以维持长时间以及高浓度的H2供应。因此,探索一种高效的给氢方式对提高H2的生物学效应具有重要意义。为探究以上问题,本文以负载氨硼烷的中空介孔二氧化硅纳米颗粒(Ammonia boraneloaded hollow mesoporous silica nanoparticle,AB@hMSN)为释氢材料,以番茄作为研究对象进行试验。结果显示与富氢水相比,AB@hMSN表现出良好的持续释氢能力且其对番茄幼苗侧根发生具有剂量依赖性的增效作用,其中10 mg/L的AB@hMSN促进效果最为显著。此外,内源H2含量测定数据表明H2参与了该材料对侧根形成的诱导 *51今日免费论文网|www.51jrft.com +Q: ^351916072*
效应。进一步的研究得出,AB@hMSN促进番茄侧根及侧根原基发生与H2调控了SlCYCA2;1、SlCYCA3;1、SlCDKA1和SlKRP2等相关细胞周期循环基因的表达水平有关。综上,AB@hMSN提高了H2的生物学效应,并通过调控H2信号下游的相关细胞周期循环基因表达来诱导番茄侧根的发生。上述研究为探究AB@hMSN诱导番茄侧根发生的机制提供了初步的理论依据。同时,基于纳米材料学的给氢策略也为氢农学研究开辟了新思路。
PRELIMINARY STUDY ON TOMATO LATERAL FORMATION INDUCED BY AB@hMSN
ABSTRACT
Hydrogen gas (H2) is a novel gaseous signaling molecule. Previous studies proved that H2 could regulate plant growth and development. However, hydrogenrich water (HRW) could hardly maintain high concentration of H2 for a long time. Therefore, it is greatly important to explore an ideal method of H2 supply. This project used ammonia boraneloaded hollow mesoporous silica nanoparticle (AB@hMSN) as hydrogenloaded material to study its effect on tomato lateral root (LR). The results showed that compared with HRW, AB@hMSN presented better sustained H2 release ability, and it had a dosedependent induction of tomato LR formation. Among them, the concentration of 10 mg/L had the most obvious effect. Meanwhile, the endogenous H2 content indicated that H2 was involved in this induction. Further studies demonstrated that AB@hMSNinduced LR formation was related to cell cycle genes regulated by H2, such as SlCYCA2;1, SlCYCA3;1, SlCDKA1 and SlKRP2. In summary, AB@hMSN increased the biological utilization of H2. Then, AB@hMSNinduced LR formation was regulated by cell cycle genes downstream of the H2 signal. The above results provided preliminary theoretical basis for exploring the mechanism of AB@hMSNinduced LR formation. Furthermore, the hydrogen supply strategy based on nanomaterials can provide a new strategy for the study of H2 biological effects in agriculture.
原文链接:http://www.jxszl.com/swgc/smkx/606354.html