水稻物候期内温光序列分析app的设计与实现【字数:14309】
目录
摘要 1
关键词 1
Abstract 1
引言
引言
1绪论 2
1.1研究背景 2
1.2水稻物候期内温光序列分析工具研究进展 2
1.3基于动态时间弯曲的时间序列相似性度量的研究进展 2
1.4目前存在的问题 3
1.5研究内容与研究路线 3
1.5.1研究内容 4
1.5.2技术路线 4
1.6论文组织与结构 5
2水稻物候期内温光序列分析工具的需求分析及开发相关知识 5
2.1系统功能分析 5
2.2系统用例图 6
2.2数据库设计 7
2.2.1系统ER图设计 7
2.2.2数据库表设计 11
2.3系统开发环境及相关技术 13
2.3.1服务器端开发环境简介 13
2.3.2客户端开发环境简介 13
2.3.3服务器端和客户端的交互 13
2.3.4使用到的相关技术和API接口 14
3温光序列数 *51今日免费论文网|www.jxszl.com +Q: #351916072#
据分析模块的设计与实现 15
3.1相似性分析 15
3.1.1功能分析 15
3.1.2相似性度量算法的原理和实现 16
3.1.3功能测试 21
3.2差异性分析 22
3.3突变检测 22
3.3.1功能分析 22
3.3.2 MK突变检测算法原理及实现 23
3.3.3功能测试 24
4查询和管理模块的设计与实现 25
4.1用户管理子模块 25
4.1.1功能分析 25
4.1.2用户注册 25
4.1.3用户登录 27
4.1.4用户修改个人信息 28
4.2历史温光数据查询子模块 31
4.2.1功能分析 31
4.2.2功能实现 33
4.2.3功能测试 33
4.3物候期知识查询子模块 34
4.3.1功能分析 35
4.3.2功能实现 35
4.3.3功能测试 35
5预测预警模块的设计与实现 36
5.1天气预报 36
5.1.1获取方法 36
5.1.2结果展示 37
5.2气温预测 37
6总结和展望 37
6.1总结 37
6.2展望 38
致谢 39
参考文献: 40
水稻物候期内温光序列分析APP的设计与实现
Design and Implementation of App for Prediction of Temperature and Light Sequences in Rice Phenological Period
Student majoring in Computer Science and Technology HU Ling
Tutor JIANG Haiyan
Abstract:Rice is vulnerable to meteorological factors, such as temperature, sunshine and rainfall in the process of planting and production. In the era of big data, a large amount of meteorological data has been accumulated. It has obvious practical significance to guide rice cultivation by analyzing the temperaturelight time series that affect rice growth. The existing problems are as follows: firstly, the current methods of measuring the similarity of thermooptical sequence do not consider the weight of each thermooptical factor in the sequence; secondly, the current APPs which provide knowledge query or guidance for rice cultivation lack the function of subanalysis of thermooptical time series in phenological period. Therefore, this paper designs and implements a temperaturelight time series analysis and prediction tool based on Android for rice phenophase. Firstly, in order to analyze the temperaturelight time series in rice phenological period, three similarity measurement algorithms of multivariate dynamic time warping were implemented, namely CPCA_SWDTW, HGSDTW and DTW. The accuracy of the algorithm was compared and evaluated by using KNN algorithm, and a conclusion was drawn that CPCA_SWDTW has higher accuracy when K value is larger. Then the MK algorithm is implemented to test and analyze the mutation of temperaturelight time series. Finally, based on Android, I designed and developed a temperaturelight sequence analysis tool for rice phenological period, which provides user management, historical temperaturelight time series query, rice phenological knowledge query, similarity analysis, difference analysis, mutation detection, and temperature prediction and early warning.
原文链接:http://www.jxszl.com/jsj/jsjkxyjs/563930.html
最新推荐
热门阅读