电化物传感器的构建及其在多聚腺苷二磷酸核糖聚合酶(parp)检测中的应用(附件)【字数:5856】
目 录
Abstract 2
Key words 2
引言 2
1 材料与方法 3
1.1材料 3
1.1.1实验药品 4
1.1.2实验溶液 4
1.1.3实验DNA 4
1.1.4实验仪器 4
1.2 方法 5
1.2.1金电极表面预处理 5
1.2.2 ckit1 修饰电极的组装 6
1.2.3样品与修饰电极的孵育和酶催化 6
1.2.4 PARP的电化学检测 7
1.2.5 3AB的电化学检测 7
2 结果 8
2.1该生物传感器的可行性验证 9
2.2该生物传感器检测性能的优化 9
2.3 PARP的电化学检测 9
2.4该传感器可重用性和稳定性的验证 10
2.5 3AB的电化学检测 10
3 讨论 10
致谢 11
参考文献 11
电化学生物传感器的构建及其在多聚腺苷二磷酸核糖聚合酶(PARP)检测中的应用
动物医学专业 白宇琛
指导教师 许媛媛
Stable and Reusable Electrochemical Biosensor for Poly(ADPribose) Polymerase and Its Inhibitor Based on EnzymeInitiated AutoPARylation
*景先生毕设|www.jxszl.com +Q: ¥351916072$
Student majoring in Veterinary Medicine BAI Yuchen
Tutor XU Yuanyuan
Abstract: A stable and reusable electrochemical biosensor for the labelfree detection of poly(ADPribose) polymerase (PARP) is designed in this work. Ckit1 is first selfassembled on a gold electrode surface. The Gquadruplex structure of ckit1 can specifically tether and activate PARP, resulting in the generation of negatively charged poly(ADPribose) polymer (PAR). On the basis of electrostatic attraction, PAR facilitates the surface accumulation of positively charged electrochemical signal molecules. Through the characterization of electrochemical signal molecules, the labelfree quantification of PARP is simply implemented. On the basis of the proposed method, selective quantification of PARP can be achieved over the linear range from 0.01 to 1 U with a calculated detection limit of 0.003U. Further studies also demonstrate the applicability of the proposed method to biosamples revealing the broad potential in practical applications. Furthermore, inhibitor of PARP has also been detected with this biosensor. Meanwhile, benefited from selfassembly on solid surface, this biosensor possesses two important features, reusability and stability, which are desirable in related biosensors.
Key words: APRP; electrochemical biosensor; stability and reusability; poly(ADPribose) polymerase
引言
多聚腺苷二磷酸核糖基化是由PARP家族所催化的一类必不可少的蛋白质翻译后修饰过程[1,2]。如图1所示,在该过程中,PARP由特定的DNA激活,对底物烟酰胺腺嘌呤二核苷酸(NAD+)进行切割,使其裂解成为烟酰胺和腺苷二磷酸核糖(ADP核糖),并将后者聚合至受体蛋白,通过若干重复反应,即可形成一个线性或分枝结构的ADP核糖聚合物(PAR)[3,4]。该聚合物一般含200个左右的ADP核糖单元,同时具有很高的电负性[5].。人体内约90%的多聚腺苷二磷酸核糖基化修饰反应,都是由PARP所完成的,它 DNA修复、转录调控、细胞凋亡等方面起到重要作用[6]。同时,PARP抑制剂也是有效的癌症治疗辅助药物。
现今,PARP的常见检测技术主要包括放射性免疫法、荧光法以及酶联免疫法等。这些检测方法往往需要昂贵的仪器,同时需要对催化底物进行放射性标记或酶标记[710]。众所周知,标记过程往往是非常耗时且昂贵,甚至可能会导致生物分子的变性[11]。例如,我们报道的检测基于NAD+ 保护的金纳米粒子蛋白多聚腺苷二磷酸核糖基化比色法[12],避免了改性基材的使用[13],因此PARP的检测被大大简化。然而,已知金纳米粒子的稳定性被多种因素影响[14],这可能会限制其在实际中的应用。
原文链接:http://www.jxszl.com/yxlw/dwyx/559436.html
最新推荐
热门阅读