排序算法详解和代码示例
排序算法详解和代码示例
1. 快速排序
1. 快速排序
介绍:快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n log n)次比较。在最坏状况下则需要Ο(n2)次比较,但这种状况并不常见。
事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。
事实上,快速排序通常明显比其他Ο(n log n) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性。
步骤:
从数列中挑出一个元素,称为 “基准”(pivot),
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
示例代码:
//a:待排序数组,low:最低位的下标,high:最高位的下标
void quickSort(int a[],int low, int high)
{
if(low>=high)
{
return;
}
int left=low;
int right=high;
int key=a[left]; /*用数组的第一个记录作为分区元素*/
while(left!=right){
while(left<right&&a[right]>=key) /*从右向左扫描,找第一个码值小于key的记录,并交换到key*/
--right;
a[left]=a[right];
while(left<right&&a[left]<=key)
++left;
a[right]=a[left]; /*从左向右扫描,找第一个码值大于key的记录,并交换到右边*/
}
a[left]=key; /*分区元素放到正确位置*/
quickSort(a,low,left-1);
quickSort(a,left+1,high);
}
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作。
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
示例代码:
//a:待排序数组,low:最低位的下标,high:最高位的下标
void quickSort(int a[],int low, int high)
{
if(low>=high)
{
return;
}
int left=low;
int right=high;
int key=a[left]; /*用数组的第一个记录作为分区元素*/
while(left!=right){
while(left<right&&a[right]>=key) /*从右向左扫描,找第一个码值小于key的记录,并交换到key*/
--right;
a[left]=a[right];
while(left<right&&a[left]<=key)
++left;
a[right]=a[left]; /*从左向右扫描,找第一个码值大于key的记录,并交换到右边*/
}
a[left]=key; /*分区元素放到正确位置*/
quickSort(a,low,left-1);
quickSort(a,left+1,high);
}
2. 归并排序
介绍:
归并排序(Merge sort,台湾译作:合并排序)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用
步骤:
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针达到序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
代码示例:
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针达到序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
代码示例:
public class MergeSort {
/**
* 归并排序
* 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列
* 时间复杂度为O(nlogn)
* 稳定排序方式
* @param nums 待排序数组
* @return 输出有序数组
*/
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
// 左边
sort(nums, low, mid);
// 右边
sort(nums, mid + 1, high);
// 左右归并
merge(nums, low, mid, high);
}
return nums;
}
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;// 左指针
int j = mid + 1;// 右指针
int k = 0;
// 把较小的数先移到新数组中
while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
}
// 把左边剩余的数移入数组
while (i <= mid) {
temp[k++] = nums[i++];
}
// 把右边边剩余的数移入数组
while (j <= high) {
temp[k++] = nums[j++];
}
// 把新数组中的数覆盖nums数组
for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}
// 归并排序的实现
public static void main(String[] args) {
int[] nums = { 2, 7, 8, 3, 1, 6, 9, 0, 5, 4 };
MergeSort.sort(nums, 0, nums.length-1);
System.out.println(Arrays.toString(nums));
}
}
/**
* 归并排序
* 简介:将两个(或两个以上)有序表合并成一个新的有序表 即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列
* 时间复杂度为O(nlogn)
* 稳定排序方式
* @param nums 待排序数组
* @return 输出有序数组
*/
public static int[] sort(int[] nums, int low, int high) {
int mid = (low + high) / 2;
if (low < high) {
// 左边
sort(nums, low, mid);
// 右边
sort(nums, mid + 1, high);
// 左右归并
merge(nums, low, mid, high);
}
return nums;
}
public static void merge(int[] nums, int low, int mid, int high) {
int[] temp = new int[high - low + 1];
int i = low;// 左指针
int j = mid + 1;// 右指针
int k = 0;
// 把较小的数先移到新数组中
while (i <= mid && j <= high) {
if (nums[i] < nums[j]) {
temp[k++] = nums[i++];
} else {
temp[k++] = nums[j++];
}
}
// 把左边剩余的数移入数组
while (i <= mid) {
temp[k++] = nums[i++];
}
// 把右边边剩余的数移入数组
while (j <= high) {
temp[k++] = nums[j++];
}
// 把新数组中的数覆盖nums数组
for (int k2 = 0; k2 < temp.length; k2++) {
nums[k2 + low] = temp[k2];
}
}
// 归并排序的实现
public static void main(String[] args) {
int[] nums = { 2, 7, 8, 3, 1, 6, 9, 0, 5, 4 };
MergeSort.sort(nums, 0, nums.length-1);
System.out.println(Arrays.toString(nums));
}
}
3. 堆排序
介绍:堆积排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆是一个近似完全二叉树的结构,并同时满足堆性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
步骤:
(1)性质:完全二叉树或者是近似完全二叉树;
(2)分类:大顶堆:父节点不小于子节点键值,小顶堆:父节点不大于子节点键值;图展示一个最小堆:
(3)左右孩子:没有大小的顺序。
(4)堆的存储 一般都用数组来存储堆,i结点的父结点下标就为(i–1)/2。它的左右子结点下标分别为 2∗i+1 和 2∗i+2。如第0个结点左右子结点下标分别为1和2。
(5)堆的操作
示例代码:
//新加入i结点,其父结点为(i-1)/2
//参数:a:数组,i:新插入元素在数组中的下标
void minHeapFixUp(int a[], int i)
{
int j, temp;
temp = a[i];
j = (i-1)/2; //父结点
while (j >= 0 && i != 0)
{
if (a[j] <= temp)//如果父节点不大于新插入的元素,停止寻找
break;
a[i]=a[j]; //把较大的子结点往下移动,替换它的子结点
i = j;
j = (i-1)/2;
}
a[i] = temp;
}
//在最小堆中加入新的数据data
//a:数组,index:插入的下标,
void minHeapAddNumber(int a[], int index, int data)
{
a[index] = data;
minHeapFixUp(a, index);
}
(2)分类:大顶堆:父节点不小于子节点键值,小顶堆:父节点不大于子节点键值;图展示一个最小堆:
(3)左右孩子:没有大小的顺序。
(4)堆的存储 一般都用数组来存储堆,i结点的父结点下标就为(i–1)/2。它的左右子结点下标分别为 2∗i+1 和 2∗i+2。如第0个结点左右子结点下标分别为1和2。
(5)堆的操作
示例代码:
//新加入i结点,其父结点为(i-1)/2
//参数:a:数组,i:新插入元素在数组中的下标
void minHeapFixUp(int a[], int i)
{
int j, temp;
temp = a[i];
j = (i-1)/2; //父结点
while (j >= 0 && i != 0)
{
if (a[j] <= temp)//如果父节点不大于新插入的元素,停止寻找
break;
a[i]=a[j]; //把较大的子结点往下移动,替换它的子结点
i = j;
j = (i-1)/2;
}
a[i] = temp;
}
//在最小堆中加入新的数据data
//a:数组,index:插入的下标,
void minHeapAddNumber(int a[], int index, int data)
{
a[index] = data;
minHeapFixUp(a, index);
}
4. 选择排序
介绍:选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小元素,存放到排序序列的起始位置,然后
再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。
代码示例:
/**
* 选择排序
*
*/
void selectSort(int a[], int n){
int key, tmp;
for(int i = 0; i< n; ++i) {
key = SelectMinKey(a, n,i); //选择最小的元素
if(key != i){
tmp = a[i]; a[i] = a[key]; a[key] = tmp; //最小元素与第i位置元素互换
}
print(a, n , i);
}
}
int main(){
int a[8] = {3,1,5,7,2,4,9,6};
cout<<"初始值:";
for(int j= 0; j<8; j++){
cout<<a[j] <<" ";
}
cout<<endl<<endl;
selectSort(a, 8);
print(a,8,8);
}
再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。以此类推,直到所有元素均排序完毕。
代码示例:
/**
* 选择排序
*
*/
void selectSort(int a[], int n){
int key, tmp;
for(int i = 0; i< n; ++i) {
key = SelectMinKey(a, n,i); //选择最小的元素
if(key != i){
tmp = a[i]; a[i] = a[key]; a[key] = tmp; //最小元素与第i位置元素互换
}
print(a, n , i);
}
}
int main(){
int a[8] = {3,1,5,7,2,4,9,6};
cout<<"初始值:";
for(int j= 0; j<8; j++){
cout<<a[j] <<" ";
}
cout<<endl<<endl;
selectSort(a, 8);
print(a,8,8);
}
5. 冒泡排序
介绍:冒泡排序(Bubble Sort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,
如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
步骤:
比较相邻的元素。如果第一个比第二个大,就交换他们两个。
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
代码示例:
public class bubbleSort {
public bubbleSort(){
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
int temp=0;
for(int i=0;i<a.length-1;i++){
for(int j=0;j<a.length-1-i;j++){
if(a[j]>a[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
for(int i=0;i<a.length;i++)
System.out.println(a[i]);
}
}
对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。
针对所有的元素重复以上的步骤,除了最后一个。
持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
代码示例:
public class bubbleSort {
public bubbleSort(){
int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
int temp=0;
for(int i=0;i<a.length-1;i++){
for(int j=0;j<a.length-1-i;j++){
if(a[j]>a[j+1]){
temp=a[j];
a[j]=a[j+1];
a[j+1]=temp;
}
}
}
for(int i=0;i<a.length;i++)
System.out.println(a[i]);
}
}
6. 插入排序
介绍:插入排序(Insertion Sort)的算法描述是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,
找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
步骤:
从第一个元素开始,该元素可以认为已经被排序
取出下一个元素,在已经排序的元素序列中从后向前扫描
如果该元素(已排序)大于新元素,将该元素移到下一位置
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
将新元素插入到该位置中
代码示例:
取出下一个元素,在已经排序的元素序列中从后向前扫描
如果该元素(已排序)大于新元素,将该元素移到下一位置
重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
将新元素插入到该位置中
代码示例:
public static void InsertSort(int[] arr)
{
int i, j;
int n = arr.Length;
int target;
//假定第一个元素被放到了正确的位置上
//这样,仅需遍历1 - n-1
for (i = 1; i < n; i++)
{
j = i;
target = arr[i];
while (j > 0 && target < arr[j - 1])
{
arr[j] = arr[j - 1];
j--;
}
arr[j] = target;
}
}
{
int i, j;
int n = arr.Length;
int target;
//假定第一个元素被放到了正确的位置上
//这样,仅需遍历1 - n-1
for (i = 1; i < n; i++)
{
j = i;
target = arr[i];
while (j > 0 && target < arr[j - 1])
{
arr[j] = arr[j - 1];
j--;
}
arr[j] = target;
}
}
7. 希尔排序
介绍:
希尔排序,也称递减增量排序算法,是插入排序的一种高速而稳定的改进版本。
希尔排序是基于插入排序的以下两点性质而提出改进方法的:
1、插入排序在对几乎已经排好序的数据操作时, 效率高, 即可以达到线性排序的效率
2、但插入排序一般来说是低效的, 因为插入排序每次只能将数据移动一位
代码示例:
代码示例:
public static void shellSortSmallToBig(int[] data) {
int j = 0;
int temp = 0;
for (int increment = data.length / 2; increment > 0; increment /= 2) {
System.out.println("increment:" + increment);
for (int i = increment; i < data.length; i++) {
// System.out.println("i:" + i);
temp = data[i];
for (j = i - increment; j >= 0; j -= increment) {
// System.out.println("j:" + j);
// System.out.println("temp:" + temp);
// System.out.println("data[" + j + "]:" + data[j]);
if (temp < data[j]) {
data[j + increment] = data[j];
} else {
break;
}
}
data[j + increment] = temp;
}
for (int i = 0; i < data.length; i++)
System.out.print(data[i] + " ");
}
}
int j = 0;
int temp = 0;
for (int increment = data.length / 2; increment > 0; increment /= 2) {
System.out.println("increment:" + increment);
for (int i = increment; i < data.length; i++) {
// System.out.println("i:" + i);
temp = data[i];
for (j = i - increment; j >= 0; j -= increment) {
// System.out.println("j:" + j);
// System.out.println("temp:" + temp);
// System.out.println("data[" + j + "]:" + data[j]);
if (temp < data[j]) {
data[j + increment] = data[j];
} else {
break;
}
}
data[j + increment] = temp;
}
for (int i = 0; i < data.length; i++)
System.out.print(data[i] + " ");
}
}
public static void main(String[] args) {
int[] data = new int[] { 26, 53, 67, 48, 57, 13, 48, 32, 60, 50 };
shellSortSmallToBig(data);
System.out.println(Arrays.toString(data));
}
int[] data = new int[] { 26, 53, 67, 48, 57, 13, 48, 32, 60, 50 };
shellSortSmallToBig(data);
System.out.println(Arrays.toString(data));
}
原文链接:http://www.jxszl.com/biancheng/JAVA/446463.html